III.
Destructive Measurements


Having examined, in Sections 2 through 9, the categories of particle detection where the energy lost by incident charged tracks is miniscule, we now turn to detection where the lost energy is a significant fraction of the kinetic energy that is carried by the incident particle.  The exploration begins in Section 10 with considerations of the radiation of photons.  Radiative processes occur at all energies, but tend to dominate at the highest energies since radiation is relativistically enhanced.


The applications of destructive readout are looked at in Sections 11 and 12.  First, in Section 11, we look at the total absorption of the energy of particles whose interactions are dominated by electromagnetic processes (electrons, photons).  The “shower” in the detecting medium is driven by electron Bremmstrahlung and photon pair production.  Second, in Section 12, we look at the total absorption of the energy of strongly interacting or hadronic particles.  Note that, for neutral hadronic particles, e.g. KL or n, there is no ionization deposit nor is there a force exerted by 
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 fields. Thus, total energy absorption is the measurement of choice. Therefore, this detection technique is of major importance for designers of general-purpose detectors where the goal is to detect all emitted particles, (see Fig. I.1) both charged and neutral.

IIIA.
Radiation


The emission of radiation by a charged particle is a fundamental process.  An isolated free particle cannot radiate and conserve energy and momentum (see Section 3).  Therefore, since another electromagnetic vertex, which reduces the rate by a factor of 
[image: image3.wmf]a

, is needed to soak up energy (see Section 6, Fig. 6.10), the emission of radiation dominates all other processes only at high energy, E>Ec (critical energy).


Radiation is often used to provide a signal in particle detectors.  Low energy photons are detected by observing the electron recoil energies in 
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 elastic scattering (Compton scattering).  High energy electrons which are accelerated emit radiation (Bremmstrahlung).  The probability to emit radiation is enhanced by a factor 
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 with respect to non-relativistic considerations.  Hence high energy processes are often dominated by radiation.   The processes that are needed to understand particle detectors are explored in Section 10.

10.
Radiation and Photon Scattering

“My candle burns at both ends; it will not last the night; but oh---it gives a lovely light.”


.... Edna St. Vincent Millay


Many aspects of radiation and photon scattering are used in particle detectors.  The attempt is made in this Section to “derive” the relevant formulae.  In order to describe the processes, dipole radiation is first “derived” using the static solutions and dimensional scaling.  Thompson scattering is the first application and it is then extended to higher energies.  The kinematics at high energies (Compton scattering) is derived.  Relativistic four dimensional velocity, acceleration, and momentum are invoked to extend dipole radiation into the relativistic regime.   The kinematics of photon emission and the virtual photon frequency spectrum lead to the concept of radiation length and Bremsstrahlung/pair production.  These latter two processes are the engines that drive EM “showers” and thus are at the heart of EM calorimetry (see Section 11).

10.1
Non-relativistic Radiation

As the first task in this Section we will try to heuristically “derive” the formula for non-relativistic radiation by making dimensional substitutions to the well known static solutions for a dipole in order to go from statics to dynamics.  We deal only with the far zone, where an observation point, O, is at a long distance from the dipole.  The scale for “long” is set by the distance of separation of the charges of the dipole, the source size.  We ignore any higher order multipoles, since we assume kr<<1.  As we show in Fig. 10.1, the static field is transverse which leads to a sin  factor in E where  is the angle between the axis of the dipole and the vector from the source point to the observation point. 


 The static dipole field falls as the cube of the distance between the source and the observation point.  This leads to static solutions where the energy density falls off as the sixth power of the radius.  Clearly, this can not be a radiative solution.


[image: image6.wmf]
Fig. 10.1:
Vector diagram in the far zone for plane waves, 

, caused by dipole acceleration.  Static situation shown for comparison


We assume that for dipole radiation the electric and magnetic field are transverse.  If the charge distribution is accelerated, with acceleration a, we make the dimensionless substitution, (ar/c2), to the static dipole field.  This substitution leads to an energy density, u, going as the inverse square of the radius, and a power, P, which is independent of radius, as required for a freely propagating radiative solution.  The radiated power is proportional to the charge q squared (or the fine structure constant) and to the acceleration of the charge squared.
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(10.1)


This expression connects the radiated power and the acceleration a of the charge q.  We can recast the expression for power in terms of the frequency  of the driving acceleration.  We replace the static dipole b, E ~ qb/r3, by the dynamic displacement, d.






(10.2)


There is a length scale related to the frequency . We find that the electromagnetic dipole power goes as the fourth power of the frequency, , and the square of the displacement (or alternatively the acceleration of the dipole).  The factor of 1/3 comes from the integration of the dipole angular distribution, 
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Consider an example on the atomic scale. We can estimate the radiated power for an electron and proton oscillating at a frequency corresponding to a visible wavelength of  = 3000 

.  The e-p separation, d, is taken to be an atomic size scale, ~1 

 , which leads to 
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.  It only takes ~10 nsec to radiate the ~ 10 eV binding energy Eo , leaving the atom collapsed to zero size. Indeed, the stability of atoms was a mystery for classical physics.

10.2
Thompson Scattering


Having “derived” the radiated power, we can now consider the problem of charges accelerated by incident radiation.  Thompson scattering is the non-relativistic scattering of incident photons by electrons of mass m, charge e.  The incident photon energy flux is the energy crossing unit area in unit time and is given by the Pointing vector, 

.  Since the plane wave electric and magnetic fields are perpendicular to each other and to the wave vector, 

, the time averaged flux is simply proportional to the amplitude Eo of the electric field squared.  (Note that the time average of (sin t)2 which is ~ 

 is 1/2.)
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The angular distribution of the radiated power follows from Eq. 10.1.






(10.5)

Note that  is the angle between the dipole vector or acceleration vector and the vector to the observation point as in Fig. 10.1.  The Lorentz force, for non-relativistic motion of the target, is just the incident electric force divided by the target mass. Note that we ignore the proton charges as sources of power because they are too heavy to attain significant acceleration.


The cross section, Section 1, is defined to be the probability of scattering per unit incident flux. We first derive the scattering cross section in its differential form.  Integrating, we then find the total cross section for the scattering of incident photons by electrons in subsequent non-relativistic motion. We average over initial photon polarizations assuming the incoming photons are unpolarized.  This is historically called the Thompson cross section, T (not to be confused with the total cross section).
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Note that the cross section is proportional to the square of the product of  and the Compton wavelength of the target. The Compton wavelength of the electron is 0.004 

 (Table 1.1).  The Thompson cross section is 0.665 barns.  Note that, as seen in Fig. 1.10, at low energies the photoelectric effect (see Section 2) dominates while at higher energies Thompson/ Compton scattering with  ~ Z  T ~ 10b is important.


It is instructive to manipulate the formula for the cross section and to put it in terms of the geometric cross section, which we discussed in Section 1.  To do that we use the Bohr radius, ao, which we know is roughly the atomic size.






(10.7)


What we observe is that the Thompson cross section is reduced by the fourth power of  with respect to the geometric cross section.  In Section 1 we saw that the atomic geometric cross section was roughly 108 barns, so that estimating  as 1/100 we expect about a 1 barn cross section for T. Numerically, low energy photons incident on a liquid hydrogen experimental target would have a Thompson mean free path of <L> ~ 0.35 cm.


It is traditional to cast the Thompson cross section in terms of the geometric cross section of a fictitious “electron size” defined by the classical self-energy or the classical electron radius (see Table 1.1).  Since at our present level of understanding electrons behave as point particles down to a length scale of 10-16 cm, we will simply omit this standard classical treatment as somewhat misleading.  Interested readers are referred to the literature given in the references.

10.3
Thompson Scattering Off Objects with Structure


At this point we would like to extend the discussion of Thompson scattering to the case of a target with some internal structure.

We briefly formulate non-relativistic scattering theory and look at the radial solution
for a spherically symmetric potential (see Appendix B for slightly more detail).  The radial Schroedinger equation in this situation is given below.  The 

 are the spherical harmonic solutions that arise in central force problems in the solution of the angular equations.






(10.8)

We identify the terms of the differential equation as the radial kinetic energy, the potential energy, the centrifugal potential and the total energy, which is proportional to k2.  Near the origin 

 so that only 

 = 0 (S wave) states are nonzero at r = 0.  




[image: image13.wmf]1

+

®

®

l

r

o

r

u


(10.9)


Let us now consider the scattering of an incoming wave by a square well of radius a and of depth Uo.  The outgoing scattered solutions are found by applying boundary conditions requiring the continuity of interior (r<a) and exterior (r>a) solutions and first derivatives.  (See Appendix B.)  In the simplified case where ka<<1, we have S wave dominance of the phase shifts (Section 1).
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Using the results of Section 1, we find that the total cross section is simply proportional to a2.






(10.11)


Let us now try to generalize the situation.  In the limit where the depth of the well, Uo, becomes small, the solution is the Mie-Debye-Rayleigh Law  ( Appendix B).
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The previous result is modified by a factor (ka)4.  This factor can be considered to be the "form factor" which describes the non-pointlike behavior of the target scattering center.


For example, if visible light, 

, is incident on a typical atom, 

, the suppression factor, ka, in the Raleigh cross section is enormous.  Raleigh scattering is something which is evident to us everyday as we look up at the sky and ask "if the sun is yellow then why is the sky blue?".  The answer is that the Raleigh scattering of the sun's light in the atmosphere is very dependent on the wavelength of the incident light.  The atmosphere preferentially scatters short wavelength light (blue) into our eyes. This phenomenon also tells us why the setting sun reddens. As more atmosphere is traversed by the sunlight, the shorter wavelengths have an increased relative chance to be scattered.

10.4
Relativistic Photon Scattering


At higher energies, where relativistic effects come into play the Thompson formula, is no longer valid. 
One of the contributing Feynman diagrams for high energy elastic scattering is given in Fig. 10.2.  We can count powers of e in the amplitude and conclude that it goes like .  The cross section will then go as 
[image: image16.wmf]2
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.  There are now two scales of energy, the center of mass energy, 

, and the target mass, m.  Thus a cross section going like 2/s is possible.
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Fig. 10.2:
Feynman diagram for photon scattering off electrons.


The high energy cross section, called the Klein-Nishina cross section, KN, is proportional to the Thompson cross section T but with a multiplicative factor which at high energies is the dimensionless ratio of the target electron mass, m, to 

 squared.  Thus at high energies, 

, the elastic cross section in Fig. 1.10 falls with energy.  There are also logarithmic factors which are simply indicated in parenthesis.
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As another example, the 

cross section, 

, also goes as 2/s.






(10.14)

For example, at a 1 GeV center of mass energy, the cross section is 87nb.  An electron incident on a liquid hydrogen target would then have a 2900 km mean free path.  This value for <L> is much larger than that for photon Thompson scattering.  The fall of the elastic photon-electron cross section with increasing energy is visible as the behavior of coherent + incoherent in Section 1.

10.5
Compton Scattering


Having looked at non-relativistic elastic scattering, we now consider the kinematics of the fully relativistic case.  To this point in the discussion we have assumed that the frequency of the incoming photons is unchanged in the scattering, e.g. Thompson scattering.  This is the principle which allows for clear radio transmission, since reflection in this case will not cause frequency shifts.  However, the constancy of frequency is no longer valid at high energies.  The quantitative scale for what we mean by high energy is set by the mass of the targets, or by the "Compton wavelength" of the electrons which scatter the incident radiation.


The kinematic definitions for the scattering of photons of frequency o off a particle of mass m are given in Fig. 10.3. As hypothesized by Einstein, we consider the photon to be a particle.  We find the quoted relation by squaring the 2 equations, for energy and momentum conservation, Eq. 10.15, and subtracting them (see Appendix A).
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Fig. 10.3:
Kinematic definitions for photon scattering off a particle of mass (m).
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The incident photon, frequency o, strikes the target which is at rest in the laboratory frame.  This causes the target to recoil with energy  after scattering the photon into final energy .  We know that energy conservation requires a decrease in the energy of the photon, which means an increase of the wavelength.  The scale for the increase is set by the Compton wavelength of the electron, 

.






(10.16)


Since the wavelength of radio waves is meters and the Compton wavelength of the electron is ~10-13m, the frequency shift can be ignored in radio transmission.  However, at incoming photon energies which are comparable to the rest energy of the electron, 0.511 MeV, (Table 1.1) the frequency shift becomes a large fraction of the incident energy and can no longer be ignored.  The dynamics also contributes to the observability of the frequency shift.  As seen in Fig. 10.4 one of the Feynman diagrams for Compton scattering has an exchanged electron.  Since the "virtual" electron would like to be as “real” as possible, i.e. have small momentum transfer, the outgoing electron will take off most of the energy of the incident photon.  Therefore, the dynamics leads to fast forward electrons, or large energy loss of the photons. 


 In dealing with photon radioactive sources (see Table 6.1) the appearance of the full incident photon energy "Compton peak" recoil electron is an everyday experience.  The kinematic limit for back-scattering, 

, is that the maximum e energy, or "Compton edge", is Tmax =  (max – m = (o[1-m/(m+2(o)] ( (o if (o >> m.
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Fig. 10.4:
Feynman diagram for Compton scattering.  Fermion exchange  leads to fast, forward electrons.


The exact angular distribution is quoted in Appendix A.  Part of the forward effect is purely kinematic due to the transformation of CM solid angle, 

 , to lab solid angle 

.
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The angular distribution at several values of 

 is shown in Fig. 10.5. Note the forward peaking at high energies.
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Fig. 10.5:
Angular distribution shown as (x,y) contour  for Compton scattering at several different incident photon energies, 

 = 0.01 MeV, 0.1 MeV and 1.0 MeV.


Some of the actual data taken by Compton showing the appearance of the primary photon energy and the scattered photon energy is shown in Fig. 10.6.  Of course, this was also historically one of the first experiments which showed the particle nature of light. Referring to Eq. 10.16, we have 

 at 

 = 90o.  Since 

 we expect a shift in wavelength of ~0.024 

  which, Fig. 10.6, is exactly what was observed.
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Fig. 10.6:
Data taken by Compton showing the appearance of the scattered photon at higher wavelength (lower energy) for different scattering angles. The shift in 

 increases with scattering angle, as expected.  (From Ref. 10.9 with permission.)

10.6
Relativistic Acceleration


The fundamental formula for non-relativistic radiation is given in Eq. 10.1.  Since acceleration is not a Lorentz invariant, this is not a formulation which is easily generalized to the relativistic case.  Recall that in special relativity the normal three dimensional vector equations of classical physics are generalized to four dimensions.  For example, the position of an event in space and time is labeled by a position vector, x, which includes both the spatial position, 

, and time, ct, in units of distance.
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The relativistic velocity, U, is the proper time derivative of the position. 






(10.19)

The proper time, ds, is the relativistically invariant "distance" between two events.  The factor of 

 (see Appendix A) that appears is near to 1 at low velocities, 

, and increases without limit as the velocity approaches that of light, 

.
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The relativistic momentum p is the mass measured with the particle at rest, the rest mass, m, times the relativistic velocity.  The particle energy is  and the momentum is 

.
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The four dimensional generalization of acceleration, A, is the proper time derivative of the relativistic velocity.
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Using Eq. 10.1, we can then use the relativistic acceleration to form a Lorentz invariant by contracting the acceleration with itself to get the square of the “length” of the acceleration.
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Note the dependence of the radiated power on a high power of the relativistic ( factor..  This enhanced radiation is a very important consequence of relativity. For example, the muon and electron have identical electromagnetic interactions.  However, the muon is ~200 times heavier.  Thus, electrons radiate much more power than muons if they are prepared to have the same energy, since 
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10.7
Circular and Linear Acceleration


Let’s look at the special case of circular motion.  In that case the three dimensional velocity 
[image: image30.wmf]v

r

 is perpendicular to the three dimensional acceleration 

 which leads us to a total radiated power which goes as the fourth power of (.  The power radiated is 

 larger than the non-relativistic case, Eq.10.1.
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In looking at the special case of linear acceleration it is convenient to formulate the power in terms of the proper time rate of change of the 4 dimensional momentum.  We can then use the relationship between proper time, ds, and coordinate time, dt, and the relationships between momentum and energy given above to formulate the radiated power in terms of the energy actually supplied by external forces.  In making that substitution we note that in going a linear distance, dx, in time interval dt the particle instantaneously has velocity ( since all these quantities are defined by clocks and rulers set  up in the laboratory reference frame.






(10.25)


Thus in the case of linear acceleration the radiated power is simply related to the energy supplied by the external forces per unit length.  This fact has immense practical implications in that circular colliders, such as e+e- storage rings, pay an enormous power penalty as ( increases.  Therefore, current electron accelerator research is in the area of linear colliders where we need not pay that added radiative power bill.  This factor first became important in the design of the Stanford Linear Accelerator Center, SLAC, which is a linear machine and is the pioneer in the study of linear acceleration and linear colliders.  Note, however, that in terms of 3 dimensional acceleration, Eq. 10.23, 

, with acceleration measured by lab clocks and rulers.

10.8
Angular Distribution


The non-relativistic dipole radiation pattern is strongly altered in the highly relativistic case.  However, the details are quite technical and will not be discussed here.  Suffice it to say that much of the basic physics can be extracted by looking at a photon emitted by a charge with velocity (.  In the rest frame of the charge the photon has energy 

* and polar angle 

*.  In the laboratory frame the factor relating 

 and 

* is, by Lorentz transformation, 
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We have previously used these approximations in Section 3 for Cerenkov radiation.


If this factor alone determined the angular distribution, the characteristic angle for emission of radiation is 1/( (see the discussion on TRD, Section 4).  This same factor can be found by looking at an isotropic emission distribution, in the CM frame, and boosting it to a rapidly moving frame.  This is called the “searchlight effect” in special relativity.






(10.27)

This factor appeared already in our discussion of transition radiation detectors in Section 4 as a factor in the vacuum phase angle.


In general the angular distribution is ugly and complex.  In the special case of linear acceleration we find the dipole radiation pattern thrown forward by the searchlight effect.  The angular distribution is shown in Fig. 10.7 for various values of (.  The searchlight effect is very obvious.  The general linear motion result approaches, for non-relativistic motion, ( ( o, the dipole result
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Fig. 10.7:
Dipole angular distribution as 9x,y) contours for the case of linear acceleration, showing the tipping forward due to the "searchlight" effect, for 

 = 0.01 and 

 = 0.3.  The growth in the radiated power, 

, is evident.
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10.9
Synchrotron Radiation


Let us now turn to the special case of circular motion.  We have already learned that the power radiated in circular motion with respect to the non-relativistic case is increased by a factor of 

.  We have also learned that in general there is a searchlight effect which throws the radiation forward into a cone of typical angular size 1/(.  Now we would like to look at the frequency spectrum of the radiated photons since we know already from the Compton effect that the radiated frequency ( need not be the same as the frequency of the driving acceleration, 

.  


We simply assert that the relativistic effect is to stretch the emitted frequency ( by a factor ~ 

 beyond 

.  The circular radius is a and ( refers to the circular velocity
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A rough schematic representation of the frequency distribution of the intensity of radiation is shown in Fig. 10.8.  The quantity dI(()/d( is the intensity as a function of frequency defined to be the radiated energy crossing unit area per unit frequency.  The radiative energy loss per revolution, ((, is simply the radiated power, 

, times the period of revolution. The power is proportional to the characteristic frequency, 

, which has a 

 factor, times another power of 
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.  Very roughly we can think of synchrotron radiation, or radiation emitted in relativistic circular motion, as the radiation per turn of 
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 photons with energies up to 

.  Hence, in every turn we lose energy (( which goes as 
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Fig. 10.8:
Schematic representation of the frequency distribution of the intensity for circular motion.
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An exact calculation of the intensity of radiation is shown in Fig. 10.9.  The sharp fall off in emitted frequencies above the characteristic frequency 
[image: image39.wmf]c

w

 survives as a feature of the exact calculation, as does the basically flat spectrum below 
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Fig. 10.9:
Frequency distribution for synchrotron radiation where y is /c.  (From Ref. 1.1.)


Synchrotron emission is very important in certain applications.  A representation of the emission of synchrotron radiation by an electron spiraling in a magnetic field is shown in Fig. 10.10.  The photons are emitted largely in the plane of the orbit.  A contour plot of the radiation pattern in circular motion is given in Fig. 10.11.  The two plots are for classical and extremely relativistic synchrotron radiation.  The “searchlight” effect, 

, is very evident in the case that 

.
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Fig. 10.10:
Schematic representation of the emission of synchrotron radiation by an electron spiraling in a magnetic field.
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Fig. 10.11:
The “searchlight” effect in synchrotron radiation.  The x-axis is along 
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.  The z-axis is along 
[image: image45.wmf]b
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 and the motion is circular.  Shown are 

 surfaces with z(,) proportional to d/d  a) 

.  Note the dipole like pattern.  b) 

.  Note the growth in power which goes as 

.  Note also the strong forward peaking with 

.

10.10
Synchrotron Applications


There are now several facilities in existence which create synchrotron light for scientists who use it as a probe of the properties of materials.  Examples in the United States are at Brookhaven National Laboratory, Argonne National Laboratory and Cornell University.  A dedicated accelerator which magnetically “wiggles” electrons is used to provide the radiation.


Synchrotron radiation can also be used for “particle identification”.  Consider a prepared beam of pions and electrons of the same momentum.  If the beam is bent in a magnet and forward produced x-ray energy photons are detected, their presence indicates electrons (large 

) and not pions.  Assume a 6m beam line magnet with a field of 20 kG and a 200 GeV incident beam.  The radius of curvature (see Section 7) is, a = 300m.  Therefore, the 6m magnet represents only 
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 of a revolution.  The electrons in the beam will radiate ~ 24 photons with energy 

 for a total energy loss of ~ 1.26 GeV. Such photons are radiated almost straight ahead (see Fig. 10.10), while the charged beam is bent away by the magnetic field.  Photons of this energy will make e+e- pairs which are then detectable (see Section 1 and Fig. 10.12).
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Fig. 10.12:
Feynman diagram for photon pair production in the field of a nucleus with atomic number Z.


As a practical matter the emission of radiation places a limit on the ease of operation of circular accelerators.  For example one GeV electrons have a loss per turn in a circular orbit of radius 1 meter of 90 keV. The driving frequency, 
[image: image48.wmf]c

w

, is of order 108/sec.  The ( factor is 2000, which means that the characteristic frequency, 
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, is of order of 1017/sec.  Since 

 is 6.6 x 10-16 (eV ( sec), Table 1.1, the energy of the photon is 2.2 keV, i.e. in the x-ray range. We have roughly 40 photons emitted per turn with energy 2.2 keV for a total energy loss per turn of 90 keV.  Thus there is a substantial radiated power to be supplied by external energy sources.
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So far we have only talked about electrons, which is perfectly reasonable since they are the lightest stable charged particle, which implies that at a given energy they will have the largest ( factor.  However, recently, in designing high luminosity multi-TeV proton-proton colliders, the effects of proton radiation are also beginning to become important.  For example, a 20 TeV proton has a ( factor of 20,000.  If the radius of such a machine is 10 kilometers, scaling as in Eq. 10.30, we find the same loss of roughly 90 keV per turn.  Since this new generation of accelerators utilizes superconducting magnets, and since that the heat capacity of such magnets is low, the photon heat load due to proton synchrotron radiation is indeed important and is a vital consideration in the design.  The European High Energy Physics Center, CERN, is building a  7.5 + 7.5 TeV pp collider (the LHC).  Each beam loses 6.9 keV/turn with 

 ~ 45 eV.  The heat load is 3.7 kW per beam at design beam current which must be removed from the cryogenic magnets.

10.11
Photon Emission Kinematics


Let us now turn to the photon emission probability and the kinematics of the radiation of a photon by a charged particle.  We have already seen that radiation requires acceleration.   Thus, it is not possible for an isolated free particle to radiate as we proved in Section 3, where we showed that a particle which does radiate must have 
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 for a real photon, this relation can not be satisfied. It is most nearly satisfied when k ~ kll or when the photons are emitted in the forward direction. 

 Since the amplitude, A, in perturbation theory is proportional to the inverse of the energy difference between the initial and final state, the largest amplitudes will have the smallest energy difference.  The favored scenario is, therefore, to have soft and co-linear photon emission,
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10.12
Photon Frequency Spectrum


In order to quantify the expectation of soft emission, we estimate the intensity of photons for different frequencies.  The energy density, u, is proportional to the square of the electric field.  The impact parameter is b. The peak electric field of a non-relativistic charged particle seen at a transverse distance b is e/b2. The moving charge makes a pulse of field in time which therefore implies a frequency spectrum. The characteristic frequency (c is the inverse of the collision time at low velocities.  The fall off of the field with distance means that there is a finite collision time which is 

 for non-relativistic collisions.  (See Section 5)


The Fourier components of the field, E((), are ~ E(t ~ 2e/bv. The field in frequency space is fairly uniform for ( < (c    = v/b = 1/(t. The total energy , U, is found by integrating the energy density u over all spatial volume.
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Ignoring the logarithmic details, we find a simple behavior for dU/d( by explicitly substituting for E((). 
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We identify the total field energy of the charged particle as the total photon number density N( and the energy of the photon,
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Therefore, the number of photons emitted per unit frequency due to the passage of a charged particle with velocity ( goes as 1/( which is a reflection of the fact that the emitted photons would “like to be” soft, Eq. 10.32.
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The implication of Eq. 10.36 is that the electromagnetic field of a moving charge can be represented as the frequency spectrum of its associated “virtual photons” which is called the Weissacker-Williams method of virtual quanta  We will ignore the modifications to the virtual photon spectrum due to relativistic motion.

10.13
Bremsstrahlung and Pair Production


Now let us consider Bremsstrahlung and pair production.  First the definition; Bremsstrahlung is the emission of photons by charged particles accelerated in the Coulomb field of a nucleus.  The Feynman diagram for photon pair production in the field of a nucleus of atomic number Z was given in Fig. 10.12 while the topologically similar diagram for Bremsstrahlung by charged particles in the field of a nucleus is given in Fig. 10.13.  Note that Fig. 10.13 is just the radiation of a photon by an electron with an additional interaction with the nuclear Coulomb field to satisfy energy - momentum conservation and thus allow the reaction to proceed.
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Fig. 10.13:
Feynman diagram for Bremsstrahlung in the field of a nucleus of atomic number Z.

 
The energy distribution of the positron in photon pair production is shown in Fig. 10.14, for two photon energies.  Clearly, the energy spectrum is roughly uniform from ~ zero to the maximum allowed energy.  We can think of this shape as arising from to the isotropic “decay” of a virtual “photon” of some nonzero mass (>2 me) acquired by interaction with the nuclear Coulomb field.  Isotropic “decay” can easily be shown to yield a uniform secondary energy spectrum.  (See Appendix A.)

Fig. 10.14:
Kinetic energy spectrum of the positron scaled to the maximum allowed energy for incident photon energy of 10 and 100 MeV.  The spectra for nuclear charge Z screened by the atomic electrons and unscreened are shown.  (See references in Section 10 for a definition of the screening approximations.)


Clearly these diagrams are higher order in the coupling constants than the photon particle scattering with which we began this Section.  The idea is to now use what we have already learned and factorize the problem of radiation by a charged particle into distinct pieces.  Consider high speed incident particles scattering off a nucleus.  In the rest frame of those particles, the nucleus is incident at high velocity.  It has Z protons of charge e.  We view the electric field of the nucleus as a distribution of soft virtual photons described by the Weissacker-Williams formula given in Eq. 10.36.  Since the photons are soft, their wavelengths are larger than the size of the nucleus.  Thus, the fields are coherent over the nucleus.  By “coherent” we mean that the phase of the field does not vary over the size of the nucleus.  Therefore the quantum mechanical amplitude squared has a factor of (Ze)2 in adding up the Z individual amplitudes which are in phase.


The incoming nucleus is equivalent to a distribution of soft photons.  They will Thompson scatter off the projectile.  We have already derived the Thompson cross section, Eq. 10.6, and we know the Weissacker-Williams distribution, Eq. 10.36. We put them together to describe the Bremsstrahlung cross section, 

, as the Thompson scattering, 

, of the soft virtual photons, 
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, describing the coherent field of the nucleus off the projectile charge.
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Therefore the Bremsstrahlung cross section as a function of frequency displays the coherent factor 

, and goes as 1/(. There are also logarithmic factors which again we ignore. The cross section is (B ~ [Z2(3/m2]ln( ). Numerically (B ~ Z2[0.58 mb] which is larger than the typical hadronic cross section (see Section 1).

10.14
The Radiation Length


We integrate the Bremsstrahlung distribution over all frequencies and weight by the energy of the emitted photon to find the total emitted energy or total radiative energy loss, dE.






(10.38)

Cast in terms of a fractional energy loss per path length in gm/cm2, 

, the radiative mean free path is just Xo , the radiation length.
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Using Eq. 10.38,  

, and  the radiation length, Xo, is;






(10.40)

The radiation length, 

 is defined to be the mean free path for emitting Bremsstrahlung radiation.  Note that the Compton wavelength refers to the wavelength of the projectile, 
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We can re-express the Bremsstrahlung cross section in terms of the mean free path (Section 1).






(10.41)

A plot of the radiation length in gm/cm2 as a function of the atomic number (data given in Table 1.2) is shown in Fig. 10.15.  Roughly speaking the functional dependence of 

, expressed in gm/cm2, is to decrease as 1/Z.  A reasonable representation of the numerical value is, 

 (gm/cm2) = [180(A/Z)]/Z.  This dependence has an immediate implication.  We should use heavier materials in order to shield against photons.  For example, lead is a standard material used in such shielding applications. Photon  sources are routinely housed in lead “pigs”.  The radiation length of Pb is 0.56 cm.  
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Fig. 10.15:
Plot of the radiation length Xo in gm/cm2 as a function of the atomic number Z. The line, ____, has the functionality 1/Z for comparison.


The radiation length goes like the square of the mass of the projectile.  Thus electrons will easily radiate whereas muons, which have the same coupling and are nearly two hundred times heavier, will not tend to radiate, because it is acceleration which is important in radiation.  Since the forces are the same on the electrons and muons, (because they have the same charge), the difference is in the acceleration2 (since this is a radiative process) which explains the appearance of the square of the masses in Eq. 10.40.  We return to the particle identification of muons in Section 13.


For lead, Eq. 10.40 yields a rough estimate of 17 gm/cm2 for the radiation length. Table 1.2 gives us the exact answer of 6.37 gm/cm2 or 0.56 cm for lead and incident electrons.  Scaling to the muon by the square of the mass, we estimate that the radiation length for muons on lead would be 236 meters, which is certainly not a practical way to shield against muons.

10.15
Pair production by Photons


Comparing Figs. 10.12 and 10.13 we can see that photon pair conversion and Bremsstrahlung are very similar in terms of Feynman diagrams.  In fact, the cross sections are almost equal.
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The roughly energy independent cross section, 
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, is responsible for the constant high energy photon cross section already displayed in Section 1.


We can think of the nucleus as supplying a small “virtual mass” to the photon, 
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.  The opening angle for the electron-positron pair in this process is characterized by an angle which is roughly the electron mass divided by the electron energy.  This is typical; masses or other basic physics quantities provide scales for the transverse momentum, whereas the only longitudinal energy scale in the problem is the incident energy, 
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The angles for photon conversion into pairs can thus be very small.  Often the photon conversion is not even resolved into individual electrons and positrons (see Section 6).  A photo of a photon conversion in a bubble chamber is shown in Fig. 10.16.  We can see, indeed, that the opening angle is initially rather small and is then increased due to the opposite sense of the rotation of the momenta of the electron and positron in the magnetic field.
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Fig. 10.16:
Bubble chamber photograph showing photon conversion into a particle antiparticle pair.  (From Ref. 10.11, with permission.)


In the next section on electromagnetic calorimetry we’ll describe an electromagnetic cascade.  Basically an accelerated electron emits photons.  Given sufficiently energetic photons, they will pair produce electrons and positrons, which will in turn make more Bremsstrahlung photons.  This is clearly a run away process leading to a large number of electrons and photons of reduced energy.  We expect, then, that an electromagnetic calorimeter which fully absorbs the particles  might be ~ 20 Xo “deep” or about 11 cm.  Glancing back at Section 1 we can see that when it becomes energetically possible for photons to make an electron positron pair, which means photons with energies above twice the electron rest mass or 1 MeV, the cross section for pair production rises rapidly.  Pair production is more important for high Z elements than low Z elements as shown by the comparison of carbon and lead shown in Fig. 1. 10 and by Eq. 10.40.


10.16
Pair Production by Charged Particles


A closely related process is pair production by a charged particle. It may be thought of as Bremsstrahlung of a “virtual” photon which  “decays” into an e+e- pair.  From a diagrammatic viewpoint, there is another vertex with respect to Bremsstrahlung where 

. We expect that the pair production cross section is reduced by a factor 

.  However, integrating over the distribution of the energies of the pairs, and comparing the two processes at the same value of y, the ratio of the photon energy to the incident energy, we find (in the high energy “completely shielded” approximation);
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Therefore, the pair production cross section is much larger at low y then the Bremsstrahlung cross section. This effect is sufficient to compensate for the power of ( that is the cost of the additional 

 vertex.  For example the integral of Eq. 10.43 for y > 5% is (
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) | y > 0.05 = 1.24.  Thus in Fig. 6.12 the energy loss in iron for pair production is comparable to that for Bremsstrahlung.

10.17
Strong and EM Interaction Probabilities


The cross section for photons incident on nucleons at high energies approaches a constant as seen in Section 1.  At high energies the main photon process is pair production.
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It is interesting to note that the nuclear cross section, as we saw in Section 1, goes as A2/3 times the Compton wavelength of the proton squared.  By comparison, the Bremsstrahlung cross section goes as Z2 because of coherence.  Since this is an electromagnetic process with 3 vertices, (Fig. 10.130, we pay the penalty of a factor ( 3.  Even so, the electromagnetic Bremsstrahlung cross section is comparable to the nuclear cross section for A~3 (lithium).  A glance at Table 1.2 shows that for Be and heavier elements the characteristic length for radiation, 

 is less than the characteristic length for nuclear interaction, 

.  It is amusing that this particular electromagnetic process is stronger than the “strong” interaction because of coherence effects.  We will explain how the fact that 

 for heavy elements is exploited to provide calorimetric “particle identification” in Section 13.
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